Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change
ثبت نشده
چکیده
Predicted climate change in the Andes will require plant species to migrate upslope to avoid extinction. Central to predictions of species responses to climate change is an understanding of species distributions along environmental gradients. Environmental gradients are frequently modelled as abiotic, but biotic interactions can play important roles in setting species distributions, abundances, and life history traits. Biotic interactions also have the potential to influence species responses to climate change, yet they remain mostly unquantified. An important interaction long studied in tropical forests is postdispersal seed predation which has been shown to affect the population dynamics, community structure, and diversity of plant species in time and space. This paper presents a comparative seed predation study of 24 species of tropical trees across a 2.5 km elevation gradient in the Peruvian Andes and quantifies seed predation variation across the elevational gradient. We then use demographic modelling to assess effects of the observed variation in seed predation on population growth rates in response to observed increasing temperatures in the area. We found marked variation among species in total seed predation depending on the major seed predator of the species and consistent changes in seed predation across the gradient. There was a significant increase in seed survival with increasing elevation, a trend that appears to be driven by regulation of seed predators via top–down forces in the lowlands giving way to bottom–up (productivity) regulation at midto high elevations, resulting in a ninefold increase in effective fecundity for trees at high elevations. This potential increase in seed crop size strongly affects modelled plant population growth and seed dispersal distances, increasing population migration potential in the face of climate change. These results also indicate that species interactions can have effects on par with climate in species responses to global change.
منابع مشابه
UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations
Ongoing changes in Earth's climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV)-B (280-315 nm) radiation regimes. Do the...
متن کاملVegetation synchronously leans upslope as climate warms.
E cologists have long sought to understand how vegetation relates to climate (1, 2). Such knowledge underlies effective mitigation and adaptation to contemporary climate change (3). Warming temperatures associated with anthropogenic increases in greenhouse gases have led ecologists to predict that vegetation gradients will ‘‘march’’ up the hill as climate envelopes shift with elevation, at a la...
متن کاملPotential effects of individual versus simultaneous climate change factors on growth and water use in chickpea
It has been reported that in different regions and sowing dates, the response of crops to past climate change is not the same, due to different rates of decrease/increase in each climatic variable at different regions and months of year. This study was aimed to assess the effect of individual versus simultaneous changes in solar radiation (S), precipitation (P) and temperature (T) on rainf...
متن کاملEditorial: Plant Competition in a Changing World
Climate change and biological invasions place new challenges on plants, their development, fitness, and competitiveness. To develop and evaluate strategies for sustainable ecosystem management and to respond to biodiversity loss, we need mechanistic understanding of the changes that are occurring in plant communities. Underlying drivers of change are plant–plant interactions which include compe...
متن کاملWithin- and Across-Species Responses of Plant Traits and Litter Decomposition to Elevation across Contrasting Vegetation Types in Subarctic Tundra
Elevational gradients are increasingly recognized as a valuable tool for understanding how community and ecosystem properties respond to climatic factors, but little is known about how plant traits and their effects on ecosystem processes respond to elevation. We studied the response of plant leaf and litter traits, and litter decomposability across a gradient of elevation, and thus temperature...
متن کامل